The unsteady pressure over the suction surface of a modern low-pressure (LP) turbine blade subjected to periodically passing wakes from a moving bar wake generator is described. The results presented are a part of detailed Large-Eddy Simulation (LES) following earlier experiments over the T106 profile for a Reynolds number of 1.6×105 (based on the chord and exit velocity) and the cascade pitch to chord ratio of 0.8. The present LES uses coupled simulations of cylinder for wake, providing four-dimensional inflow conditions for successor simulations of wake interactions with the blade. The three-dimensional, time-dependent, incompressible Navier-Stokes equations in fully covariant form are solved with 2.4×106 grid points for the cascade and 3.05×106 grid points for the cylinder using a symmetry-preserving finite difference scheme of second-order spatial and temporal accuracy. A separation bubble on the suction surface of the blade was found to form under the steady state condition. Pressure fluctuations of large amplitude appear on the suction surface as the wake passes over the separation region. Enhanced receptivity of perturbations associated with the inflexional velocity profile is the cause of instability and coherent vortices appear over the rear half of the suction surface by the rollup of shear layer via Kelvin-Helmholtz (K-H) mechanism. Once these vortices are formed, the steady-flow separation changes remarkably. These coherent structures embedded in the boundary amplify before breakdown while traveling downstream with a convective speed of about 37 percent of the local free-stream speed. The vortices play an important role in the generation of turbulence and thus to decide the transitional length, which becomes time-dependent. The source of the pressure fluctuations on the rear part of the suction surface is also identified as the formation of these coherent structures. When compared with experiments, it reveals that LES is worth pursuing as an understanding of the eddy motions and interactions is of vital importance for the problem.
Skip Nav Destination
ASME Turbo Expo 2005: Power for Land, Sea, and Air
June 6–9, 2005
Reno, Nevada, USA
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
0-7918-4730-6
PROCEEDINGS PAPER
Large-Eddy Simulation of Unsteady Surface Pressure Over a LP Turbine Blade Due to Interactions of Passing Wakes and Inflexional Boundary Layer Available to Purchase
S. Sarkar,
S. Sarkar
Indian Institute of Technology, Kanpur, India
Search for other works by this author on:
Peter R. Voke
Peter R. Voke
University of Surrey, Guildford, UK
Search for other works by this author on:
S. Sarkar
Indian Institute of Technology, Kanpur, India
Peter R. Voke
University of Surrey, Guildford, UK
Paper No:
GT2005-68867, pp. 1435-1446; 12 pages
Published Online:
November 11, 2008
Citation
Sarkar, S, & Voke, PR. "Large-Eddy Simulation of Unsteady Surface Pressure Over a LP Turbine Blade Due to Interactions of Passing Wakes and Inflexional Boundary Layer." Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air. Volume 6: Turbo Expo 2005, Parts A and B. Reno, Nevada, USA. June 6–9, 2005. pp. 1435-1446. ASME. https://doi.org/10.1115/GT2005-68867
Download citation file:
17
Views
Related Proceedings Papers
Related Articles
Large-Eddy Simulation of Unsteady Surface Pressure Over a Low-Pressure Turbine Blade due to Interactions of Passing Wakes and Inflexional Boundary Layer
J. Turbomach (April,2006)
Combined Effects of Surface Trips and Unsteady Wakes on the Boundary Layer Development of an Ultra-High-Lift LP Turbine Blade
J. Turbomach (July,2005)
Separated Flow Transition on an LP Turbine Blade With Pulsed Flow Control
J. Turbomach (April,2008)
Related Chapters
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Experimental Investigation of Ventilated Supercavitation Under Unsteady Conditions
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Introduction
Design and Analysis of Centrifugal Compressors