One of the major challenges for the successful operation of high-power-density micro-devices lies in the stable operation of the bearings supporting the high-speed rotating turbomachinery. Previous modeling efforts by Piekos [1], Liu et al. [2] and Spakovszky and Liu [3] have mainly focused on the operation and stability of journal bearings. However, since thrust bearings play the vital role of providing axial support and stiffness, there is a need to gain a fuller understanding of their behavior. In this work, a rigorous theory is presented to analyze the effects of compressibility in micro-flows (characterized by low Reynolds numbers and high Mach numbers) through hydrostatic thrust bearings for application to microturbomachines. The analytical model, which combines a 1-D compressible flow model with Finite-Element Analysis, serves as a useful tool for establishing operating protocols and assessing the stability characteristics of hydrostatic thrust bearings. The model is capable of predicting key steady-state performance indicators, such as bearing mass flow, axial stiffness and natural frequency as a function of the hydrostatic supply pressure and thrust bearing geometry. The model has been applied to investigate the static stability of hydrostatic thrust bearings in micro-turbine-generators, where the electrostatic attraction between the stator and rotor gives rise to a negative axial stiffness contribution and may lead to device failure. Thrust bearing operating protocols have been established for a micro-turbopump, where the bearings also serve as an annular seal preventing the leakage of pressurized liquid from the pump to the gaseous flow in the turbine. The dual role of the annular pad poses challenges in the operation of both the device and the thrust bearing. The operating protocols provide essential information for the required thrust bearing supply pressures and axial gaps required to prevent the leakage of water into the thrust bearings for various pump outlet pressures. Good agreement is observed between the model predictions and experimental results. In addition, a dynamic stability analysis is also performed, which indicates the occurrence of unstable axial oscillations due to flow choking effects in both forward and aft thrust bearings. These a-priori dynamic stability predictions were subsequently verified experimentally on a micro-turbocharger. The frequencies of unstable axial oscillations predicted using the model compare favorably to those determined experimentally, thus vindicating the validity of the model. A simple and useful dynamic stability criterion is established, where the occurrence of flow choking in both thrust bearings give rise to dynamic instability.

You do not currently have access to this content.