In a typical gas turbine engine, the gas exiting the combustor is significantly hotter than the melting temperature of the turbine components. The highest temperatures in an engine are typically seen by the turbine inlet guide vanes. One method used to cool the inlet guide vanes is film-cooling, which involves bleeding comparatively low-temperature, high-pressure air from the compressor and injecting it through an array of discrete holes on the vane surface. To predict the vane surface temperatures in the engine, it is necessary to measure the heat transfer coefficient and adiabatic film-cooling effectiveness on the vane surface. This study presents heat transfer coefficients and adiabatic effectiveness levels measured in a scaled-up, two-passage cascade with a contoured endwall. Heat transfer measurements indicated that the behavior of the boundary layer transition along the suction side of the vane showed sensitivity to the location of film-cooling injection, which was simulated through the use of a trip wire placed on the vane surface. Single row adiabatic effectiveness measurements without any upstream blowing showed jet lift-off was prevalent along the suction side of the airfoil. Single row adiabatic effectiveness measurements on the pressure side, also without upstream showerhead blowing, indicated jet lifted-off and then reattached to the surface in the concave region of the vane. In the presence of upstream showerhead blowing, the jet lift-off for the first pressure side row was reduced, increasing adiabatic effectiveness levels.
Skip Nav Destination
ASME Turbo Expo 2005: Power for Land, Sea, and Air
June 6–9, 2005
Reno, Nevada, USA
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
0-7918-4726-8
PROCEEDINGS PAPER
Heat Transfer and Film-Cooling Measurements on a Stator Vane With Fan-Shaped Cooling Holes
W. Colban,
W. Colban
Virginia Polytechnic Institute and State University, Blacksburg, VA
Search for other works by this author on:
A. Gratton,
A. Gratton
Virginia Polytechnic Institute and State University, Blacksburg, VA
Search for other works by this author on:
K. A. Thole,
K. A. Thole
Virginia Polytechnic Institute and State University, Blacksburg, VA
Search for other works by this author on:
M. Haendler
M. Haendler
Siemens Power Generation, Muelheim a. d. Ruhr, Germany
Search for other works by this author on:
W. Colban
Virginia Polytechnic Institute and State University, Blacksburg, VA
A. Gratton
Virginia Polytechnic Institute and State University, Blacksburg, VA
K. A. Thole
Virginia Polytechnic Institute and State University, Blacksburg, VA
M. Haendler
Siemens Power Generation, Muelheim a. d. Ruhr, Germany
Paper No:
GT2005-68258, pp. 299-309; 11 pages
Published Online:
November 11, 2008
Citation
Colban, W, Gratton, A, Thole, KA, & Haendler, M. "Heat Transfer and Film-Cooling Measurements on a Stator Vane With Fan-Shaped Cooling Holes." Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air. Volume 3: Turbo Expo 2005, Parts A and B. Reno, Nevada, USA. June 6–9, 2005. pp. 299-309. ASME. https://doi.org/10.1115/GT2005-68258
Download citation file:
24
Views
Related Proceedings Papers
Related Articles
Investigation of Unsteady Flow Phenomena in First Vane Caused by Combustor Flow With Swirl
J. Turbomach (April,2017)
Computational Study of a Midpassage Gap and Upstream Slot on Vane Endwall Film-Cooling
J. Turbomach (January,2011)
Improving Turbine Component Efficiency
J. Eng. Power (April,1980)
Related Chapters
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Introduction
Design and Analysis of Centrifugal Compressors