Cooling combustor chambers for gas turbine engines is challenging, given the complex flow and thermal fields inherent to these modules. This complexity, in part, arises from the interaction of high-momentum dilution jets required to mix the fuel with film cooling jets that are intended to cool the combustor walls. This paper discusses the experimental results from a combustor simulator tested in a low-speed wind tunnel that includes both the dilution jets and film-cooling jets. The specific purpose of this study is to evaluate the influence that the dilution jets has on the film-cooling effectiveness. Infrared thermography was used to measure surface temperatures along a low thermal conductivity plate to quantify the adiabatic effectiveness from an array of film cooling holes with the presence of dilution holes. To further understand the flow phenomena, thermocouple probes and laser Doppler velocimetry were used to measure the thermal and flow fields, respectively. Parametric experiments indicate that the film cooling flow is disrupted along the combustor walls in the vicinity of the high-momentum dilution jets. In fact, a significant penalty in cooling effectiveness of the combustor is observed with increased dilution jet penetration.

This content is only available via PDF.
You do not currently have access to this content.