Brush seals are designed to survive transient rotor rubs. Inherent brush seal flexibility reduces frictional heat generation. However, high surface speeds combined with thin rotor sections may result in local hot spots. Considering large surface area and accelerated oxidation rates, frictional heat at bristles tips is another major concern especially in challenging high temperature applications. This study investigates temperature distribution in a brush seal as a function of frictional heat generation at bristle tips. The two-dimensional axisymmetric CFD analysis includes the permeable bristle pack as a porous medium allowing fluid flow throughout the bristle matrix. In addition to effective flow resistance coefficients, isotropic effective thermal conductivity as a function of temperature is defined for the bristle pack. Employing a fin approach for a single bristle, a theoretical analysis has been developed after outlining the brush seal heat transfer mechanism. Theoretical and CFD analysis results are compared. To ensure coverage for various seal designs and operating conditions, several frictional heat input cases corresponding to different seal stiffness have been studied. Frictional heat generation is outlined to introduce a practical heat flux input into the analysis model. Effect of seal stiffness on nominal bristle tip temperature has been evaluated. Analyses show a steep temperature rise close to bristle tips that diminishes further away. Heat flux conducted through the bristles dissipates into the flow by a strong convection at fence height region.
Skip Nav Destination
ASME Turbo Expo 2005: Power for Land, Sea, and Air
June 6–9, 2005
Reno, Nevada, USA
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
0-7918-4726-8
PROCEEDINGS PAPER
Brush Seal Temperature Distribution Analysis
Yahya Dogu,
Yahya Dogu
Kirikkale University, Kirikkale, Turkey
Search for other works by this author on:
Mahmut F. Aksit
Mahmut F. Aksit
Sabanci University, Istanbul, Turkey
Search for other works by this author on:
Yahya Dogu
Kirikkale University, Kirikkale, Turkey
Mahmut F. Aksit
Sabanci University, Istanbul, Turkey
Paper No:
GT2005-69120, pp. 1237-1248; 12 pages
Published Online:
November 11, 2008
Citation
Dogu, Y, & Aksit, MF. "Brush Seal Temperature Distribution Analysis." Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air. Volume 3: Turbo Expo 2005, Parts A and B. Reno, Nevada, USA. June 6–9, 2005. pp. 1237-1248. ASME. https://doi.org/10.1115/GT2005-69120
Download citation file:
30
Views
Related Proceedings Papers
Related Articles
Brush Seal Temperature Distribution Analysis
J. Eng. Gas Turbines Power (July,2006)
Computational Heat Transfer Analysis of the Effect of Skirts on the Performance of Third-World Cookstoves
J. Thermal Sci. Eng. Appl (December,2009)
An Efficient Localized Radial Basis Function Meshless Method for Fluid Flow and Conjugate Heat Transfer
J. Heat Transfer (February,2007)
Related Chapters
List of Commercial Codes
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Experimental Investigation of an Improved Thermal Response Test Equipment for Ground Source Heat Pump Systems
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Laminar Fluid Flow and Heat Transfer
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine