An attempt is made to describe the physical mechanism of transition of an inflexional boundary layer over the suction surface of a highly cambered low-pressure (LP) turbine blade influenced by the periodic passing wakes. Large-eddy simulations (LES) of wake passing over the T106 profile for a Reynolds number of 1.6×105 (based on the chord and exit velocity) are performed using wake data extracted from precursor simulations of cylinder replacing a moving bar in front of the cascade. The three-dimensional, time-dependent, incompressible Navier-Stokes equations in fully covariant form are solved using a symmetry-preserving finite difference scheme of second-order spatial and temporal accuracy. The present LES results are compared with experiments and DNS. The operating condition of a high-lift LP turbine blade leads to the formation of a separation bubble on the suction side. The interactions of incoming wake with this separation bubble complicate the transition process. Enhanced receptivity of inflexional boundary layer causes amplification of the perturbations produced by the passing wake leading to the formation of coherent vortices within the boundary layer. The transition mechanism during the wake-induced path is highly influenced by the convection and breakdown of these coherent vortices. Streamwise evolution of turbulent kinetic energy and production illustrates that these vortices play an important role in generation of turbulence and thus to decide the transitional length, which becomes time-dependent. LES results resolve a multimoded transition on the suction surface and the calmed region. The calmed region is nothing but an attached flow with low production as the boundary layer tends to relax after wake passing; the level of turbulent intensity suggests that the boundary layer is in a state of transition rather than laminarized.

This content is only available via PDF.
You do not currently have access to this content.