This paper presents experimental results on separation-bubble transition at low Reynolds number and low freestream turbulence, measured on an airfoil using particle image velocimetry (PIV). The two-dimensional PIV measurements have been performed over the suction surface of a low-Reynolds-number airfoil in a water tow-tank facility. Reynolds numbers, based on airfoil chord length and towing speed, of 40,000 and 65,000 have been examined at various angles of incidence, providing a range of streamwise pressure distributions and transitional separation-bubble geometries. The types of bubbles observed range from a short and thick bubble with separation near the leading edge of the airfoil, to a long and thin bubble with separation far downstream of the suction peak. The PIV measurements facilitate visualization of the vortex dynamics associated with separation-bubble transition. The growth of instability waves within the separated shear layer and eventual breakdown into turbulence is documented through the instantaneous vector fields. For all cases examined, large-scale vortex shedding and multiple reverse-flow zones are observed in the reattachment region. A technique for estimating the location of transition onset based on statistical turbulence quantities is presented, and comparisons are made to existing transition models.

This content is only available via PDF.
You do not currently have access to this content.