Accurate gas turbine fault detection and diagnosis (FDD) is essential to improving airline safety as well as in reducing airline costs associated with delays and cancellations. In this paper, we present FDD methods based on feature extraction methods using nonlinear principal component analysis (NLPCA) and curvilinear component analysis (CCA). The underlying principle of both methods is to find the most representative feature space corresponding to gas turbine normal and faulty operations. During operation, new sensor data is located in this feature space and then it is determined whether a particular fault is indicated. NLPCA is an extension of linear PCA methods to the nonlinear domain; therefore, it is intrinsically better suited to nonlinear domains such as the gas turbine engine. The CCA method is another approach to clustering having superior properties for determining cluster manifolds automatically compared to the popular selforganizing map (SOM) method of clustering. The developed methods are tested with snapshot data collected at takeoff, both normal and faulty, from a turbofan gas turbine propulsion engine and the results are presented.

This content is only available via PDF.
You do not currently have access to this content.