This paper presents the multi-objective optimization of a geared rotor-bearing system with the critical speeds constraints by using an efficient multilevel algorithm. The weight of each rotor shaft, the unbalance response, and the response due to the transmission error are minimized simultaneously under the critical speed constraints. The design variables are the inner radii of the shaft, the stiffness of bearings, and the gear mesh stiffness. The finite element method (FEM) is employed to analyze the dynamic characteristics and the method of feasible direction (MFD) is applied in the optimization of the single objective stage. Based on the sensitivity analysis that gear mesh stiffness has almost no influences on the critical speeds of the uncoupled modes of two shafts, an efficient multilevel algorithm composed of system and subsystem levels is developed. In the cycle of iteration, the minimization of the shaft weight is performed in the subsystem level with the critical speed constraints of only uncoupled modes of two shafts and the unbalance response and the transmission error response are reduced in the system level with the critical speed constraints of only coupled modes. It is indicated from the numerical results that the shaft weight, the unbalance response, and the transmission error response via the multilevel technique (ML) are all reduced much more than those via the weighting method (WM) and the goal programming method (GPM).

This content is only available via PDF.
You do not currently have access to this content.