This paper presents experimental results of the secondary flows from two large-scale, low-speed, linear turbine cascades for which the incidence was varied. The aerofoils for the two cascades were designed for the same inlet and outlet conditions and differed mainly in their leading-edge geometries. Detailed flow field measurements were made upstream and downstream of the cascades and static pressure distributions were measured on the blade surfaces for three different values of incidence: 0, +10 and +20 degrees. The results from this experiment indicate that the strength of the passage vortex does not continue to increase with incidence, as would be expected from inviscid flow theory. The streamwise acceleration within the aerofoil passage seems to play an important role in influencing the strength of the vortex. The most recent off-design secondary loss correlation (Moustapha et al. [1]) includes leading-edge diameter as an influential correlating parameter. The correlation predicts that the secondary losses for the aerofoil with the larger leading-edge diameter are lower at off-design incidence; however, the opposite is observed experimentally. The loss results at high positive incidence have also high-lighted some serious shortcomings with the conventional method of loss decomposition. An empirical prediction method for secondary losses has been developed and will be presented in a subsequent paper.

This content is only available via PDF.
You do not currently have access to this content.