A study of the three-dimensional stator-rotor interaction in a turbine stage is presented. Experimental data reveal vortices downstream of the rotor which are stationary in the absolute frame — indicating that they are caused by the stator exit flowfield. Evidence of the rotor hub passage vortices is seen, but additional vortical structures away from the endwalls, which would not be present if the rotor were tested in isolation, are also identified. An unsteady computation of the rotor row is performed using the measured stator exit flowfield as the inlet boundary condition. The strength and location of the vortices at rotor exit are predicted. A formation mechanism is proposed whereby stator wake fluid with steep spanwise gradients of absolute total pressure is responsible for all but one of the rotor exit vortices. This mechanism is then verified computationally using a passive-scalar tracking technique. The predicted loss generation through the rotor row is then presented and a comparison made with a steady calculation where the inlet flow has been mixed out to pitchwise uniformity. The loss produced in the steady simulation, even allowing for the mixing loss at inlet, is 10% less than that produced in the unsteady simulation. This difference highlights the importance of the time-accurate calculation as a tool of the turbomachine designer.
Skip Nav Destination
ASME Turbo Expo 2004: Power for Land, Sea, and Air
June 14–17, 2004
Vienna, Austria
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
0-7918-4170-7
PROCEEDINGS PAPER
Secondary Flows and Loss Caused by Blade Row Interaction in a Turbine Stage
Graham Pullan
Graham Pullan
University of Cambridge, Cambridge, UK
Search for other works by this author on:
Graham Pullan
University of Cambridge, Cambridge, UK
Paper No:
GT2004-53743, pp. 1247-1257; 11 pages
Published Online:
November 24, 2008
Citation
Pullan, G. "Secondary Flows and Loss Caused by Blade Row Interaction in a Turbine Stage." Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air. Volume 5: Turbo Expo 2004, Parts A and B. Vienna, Austria. June 14–17, 2004. pp. 1247-1257. ASME. https://doi.org/10.1115/GT2004-53743
Download citation file:
20
Views
Related Proceedings Papers
Related Articles
Secondary Flows and Loss Caused by Blade Row Interaction in a Turbine Stage
J. Turbomach (July,2006)
Vortex-Wake-Blade Interaction in a Shrouded Axial Turbine
J. Turbomach (October,2005)
Related Chapters
Introduction
Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis
Out-Of-Order Matrix Processor: Implementation and Performance Evaluation
International Conference on Advanced Computer Theory and Engineering (ICACTE 2009)
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential