In this study, tests of ductility and ductile to brittle transition temperature DBTT of both PtAl RT22 and MCrAlY Amdry 997 coatings on both single crystal and polycrystalline substrates (CMSX-4, SCB, and In792) have been carried out. An acoustic emission detection technique that makes the detection of coating failures (micro cracking and delamination) possible has been employed during the tensile tests. The acoustic emission AE detection has been calibrated on the uncoated substrates and on some coated specimens at various testing temperatures and at different strain rate, together with metallurgical examination. A correlation between AE signals and failure types is established. It has been found that the substrate materials generate also some AE signals during plastic deformation. The amplitude of the AE signals depends strongly on the type of substrate material and the testing temperature but slightly on the strain rate. The substrate emissions may disturb the detection of coating failure. However, except for the disturbance from the substrate materials, the AE is still a sensitive, reliable, and useful technique to detect coating failures at various temperatures. The ductility results determined in this study have shown that the overlay coating Amdry 997 has a lower DBTT ∼550°C and higher ductilities than the diffusion coating RT22. Both of these differences indicate that Amdry 997 is much more ductile than RT22.

This content is only available via PDF.
You do not currently have access to this content.