The prediction of fatigue life of components inside aircraft engines depends on the reliable numerical modelling of the temperature distribution during a mission cycle as this gives rise to life limiting thermal stresses. The transient temperature distribution is usually measured during an engine test and is then used to validate the numerical model, which in turn produces the basis for calculating the thermal stress levels. This paper describes the thermal analysis of a High Pressure Compressor Rotor (HPCR) and how the use of a 3-D Computational Fluid Dynamic (CFD) analysis improved the quantitative agreement between the measured and the predicted temperature profiles. The highly complex three-dimensional flow field within the compressor rotor was modelled by exploiting symmetry conditions and using a standard k-ε turbulence model. Results of the tangential, axial and radial velocity components as well as locations of peaks in turbulence kinetic energy were predicted to help identify the flow field inside the forward cavity of the rotor. Two ways of predicting internal re-circulating rates to the rim area are proposed. Finally, plots of predicted metal temperature profiles before and after the CFD-analysis are presented.

This content is only available via PDF.
You do not currently have access to this content.