Flame stabilization in a swirl-stabilized combustor occurs in an aerodynamically generated recirculation region which is a result of vortex breakdown. The characteristics of the recirculating flow are dependent on the swirl number and on axial pressure gradients. Coupling to downstream pressure pulsations is also possible. Control methods of unstable thermoacoustic modes and reduction of NOx and CO emissions were investigated in a low-emission swirl-stabilized industrial combustor. Several axisymmetric and helical unstable modes were identified for fully premixed and diffusion type combustion. In addition to mode variation, the instabilities spanned a wide range of frequencies. The unstable modes that were associated with flow instabilities of the wake-like region on the combustor axis due to vortex breakdown (VBD), shear layer instabilities at the sudden expansion (dump plane) and equivalence ratio fluctuations were in a range of normalized frequency St = 0.5–1.1. Other unstable modes at higher frequencies of St = 7.77, were excited by the Kelvin-Helmholtz vortices shed at the burner’s exit. The combustion structures associated with the different unstable modes were visualized using phase locked images of OH chemiluminescence and analyzed using cross-correlations between OH detecting fiberoptics. After identifying the structure of the instabilities and determining their source, different geometrical changes were applied to disrupt their formation or vary their characteristics. These modifications reduced the periodic heat release and enabled decoupling of the heat from acoustic modes that led to thermoacoustic instabilities. The passive control techniques that will be described in this paper were effective in suppressing the thermoacoustic pressure oscillations and also reduced NOx and CO emissions.
Skip Nav Destination
ASME Turbo Expo 2004: Power for Land, Sea, and Air
June 14–17, 2004
Vienna, Austria
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
0-7918-4166-9
PROCEEDINGS PAPER
The Effectiveness of Passive Combustion Control Methods
Christian Oliver Paschereit,
Christian Oliver Paschereit
Technical University of Berlin, Berlin, Germany
Search for other works by this author on:
Ephraim Gutmark
Ephraim Gutmark
University of Cincinnati, Cincinnati, OH
Search for other works by this author on:
Christian Oliver Paschereit
Technical University of Berlin, Berlin, Germany
Ephraim Gutmark
University of Cincinnati, Cincinnati, OH
Paper No:
GT2004-53587, pp. 361-374; 14 pages
Published Online:
November 24, 2008
Citation
Paschereit, CO, & Gutmark, E. "The Effectiveness of Passive Combustion Control Methods." Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air. Volume 1: Turbo Expo 2004. Vienna, Austria. June 14–17, 2004. pp. 361-374. ASME. https://doi.org/10.1115/GT2004-53587
Download citation file:
19
Views
Related Proceedings Papers
Related Articles
Time Domain Simulation of Combustion Instabilities in Annular Combustors
J. Eng. Gas Turbines Power (July,2003)
Passive Control of Noise and Instability in a Swirl-Stabilized Combustor With the Use of High-Strength Porous Insert
J. Eng. Gas Turbines Power (May,2012)
Instability of a Premix Burner With Nonmonotonic Pressure Drop Characteristic
J. Eng. Gas Turbines Power (January,2003)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Experimental Investigation of Ventilated Supercavitation Under Unsteady Conditions
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)