This paper provides the primary results of an experimental study into the fluid flow and heat transfer features at a cross-flow of a dimpled tube in a rectangular-shaped duct between two adjacent dimpled tubes. The cylindrical dimples were engraved on each tube surface both in the staggered and in-line mode; altogether nine dimpled tubes were tested in the range of the Reynolds number Re from 8,000 to 115,000. The first group (four samples) represents tubes structured with symmetrical dimples drilled in the radial direction, while the second group (five samples) is tubes with asymmetrical dimples. In the latter case each dimple was made in such a way that its axis is parallel to the tube diameter with a certain clearance between axes. For comparisons a row of smooth tubes of the same configuration was tested under identical fluid boundary conditions. Three factors primarily influencing heat transfer are under consideration in this paper: a) increase in a heat exchange surface due to a tube dimpling, b) variations in the flow pattern, c) interaction between boundary layer and main flow. Behind a smooth tube in confined space the reverse flow zone grows initially to Re = 37,000 however decreases at larger Reynolds numbers. Unlike this, behind a dimpled tube in confined space the reverse flow zone reduces at low Reynolds numbers to reach minimum magnitude at Re = 10,000–28,000, and increases afterwards to become approximately constant at Reynolds numbers over 45,000. It has been found, the reverse flow length depends on the Reynolds number, dimple parameters and configuration. The frequency spectrum of the dimpled tube is different from that occurring for a smooth tube. A few frequency ‘picks’ with corresponding the Strouhal numbers were registered including those typical to a single dimple on a flat plate. The heat transfer enhancement rates of around 45%–55% compared with a smooth tube in confined space were obtained depending on dimple parameters and flow regimes. Increase in the heat transfer enhancement rate for tubes with shallow dimples exceeds growth of heat exchange surface due to a dimpling. Increases in a pressure drop at the tube bundle caused by dimpling do not exceed 14%.

This content is only available via PDF.
You do not currently have access to this content.