Pre-swirl nozzles are often used in gas turbines to deliver the cooling air to the turbine blades through receiver holes in a rotating disc. The distribution of the local Nusselt number, Nu, on the rotating disc is governed by three non-dimensional fluid-dynamic parameters: pre-swirl ratio, βp, rotational Reynolds number, Reφ, and turbulent flow parameter, λT. A scaled model of a gas turbine rotor-stator cavity, based on the geometry of current engine designs, has been used to create appropriate flow conditions. This paper describes how thermochromic liquid crystal (TLC), in conjunction with a stroboscopic light and digital camera, is used in a transient experiment to obtain contour maps of Nu on the rotating disc. The thermal boundary conditions for the transient technique are such that an exponential-series solution to Fourier’s one-dimensional conduction equation is necessary. A method to assess the uncertainty in the measurements is discussed and these uncertainties are quantified. The experiments reveal that Nu on the rotating disc is axisymmetric except in the region of the receiver holes, where significant two-dimensional variations have been measured. At the higher coolant flow rates studied, there is a peak in heat transfer at the radius of the pre-swirl nozzles. The heat transfer is governed by two flow regimes: one dominated by inertial effects associated with the impinging jets from the pre-swirl nozzles, and another dominated by viscous effects at lower flow rates. The Nusselt number is observed to increase as either Reφ or λT increases.

This content is only available via PDF.
You do not currently have access to this content.