Measurements are presented of the local velocity and wall static-pressure distributions by using laser-Doppler velocimeter and pressure transducers, respectively, in a rotating two-pass square duct with ribs placed on the leading and trailing walls at an angle of 45° to the main stream. The ribs were square in cross-section and in a parallel mode of arrangement. The rib-height/duct-height ratio and the pitch/rib-height ratio were 0.136 and 10, respectively. The duct Reynolds number was 1×104 and rotation number Ro ranged from 0 to 0.2. Results are addressed in terms of the evolutions of both main flow and cross-stream secondary flow and the distributions of the pressure coefficient, which are lacking in the published literature for ducts ribbed with 45° ribs and under rotation. In addition, the relationships between the regional averaged Nusselt number, transverse and convective mean velocity component, and turbulent kinetic energy are documented. The 45° ribs are found to reduce the pressure loss to 60% of the 90° ribs for rotating duct under same operating conditions. For CFD reference, the fully developed flow condition is absent for the rotating ducts investigated. The measured evolution of complex secondary flow vortices is believed to be a challenge to numerical simulations.

This content is only available via PDF.
You do not currently have access to this content.