The lean, premixed DLN2.5H combustion system was designed to deliver low NOx emissions from 50% to 100% load in both the Frame 7H (60 Hz) and Frame 9H (50 Hz) heavy-duty industrial gas turbines. The H machines employ steam cooling in the gas turbine, a 23:1 pressure ratio, and are fired at 1440 C (2600 F) to deliver over-all thermal efficiency for the combined-cycle system near 60%. The DLN2.5H combustor is a modular can-type design, with 14 identical chambers used on the 9H machine, and 12 used on the smaller 7H. On a 9H combined-cycle power plant, both the gas turbine and steam turbine are fired using the 14-chamber DLN2.5H combustion system. An extensive full-scale, full-pressure rig test program developed the fuel-staged dry, low emissions combustion system over a period of more than five years. Rig testing required test stand inlet conditions of over 50 kg/s at 500 C and 28 bar, while firing at up to 1440 C, to simulate combustor operation at base load. The combustion test rig simulated gas path geometry from the discharge of the annular tri-passage diffuser through the can-type combustion liner and transition piece, to the inlet of the first stage turbine nozzle. The present paper describes the combustion system, and reports emissions performance and operability results over the gas turbine load and ambient temperature operating range, as measured during the rig test program.

This content is only available via PDF.
You do not currently have access to this content.