Foreign object damage (FOD) behavior of two commercial gas-turbine grade silicon nitrides, AS800 and SN282, was determined at ambient temperature through post-impact strength testing for thin disks impacted by steel-ball projectiles with a diameter of 1.59 mm in a velocity range from 115 to 440 m/s. AS800 silicon nitride exhibited a greater FOD resistance than SN282, primarily due to its greater value of fracture toughness (KIC). The critical impact velocity in which the corresponding post-impact strength yielded the lowest value was Vc ≈ 440 and 300 m/s for AS800 and SN282, respectively. A unique lower-strength regime was typified for both silicon nitrides depending on impact velocity, attributed to significant radial cracking. The damages generated by projectile impact were typically in the forms of ring, radial, and cone cracks with their severity and combination being dependent on impact velocity. Unlike thick (3 mm) flexure bar specimens used in the previous studies, thin (2 mm) disk target specimens exhibited a unique backside radial cracking occurring on the reverse side just beneath the impact sites at and above impact velocity of 160 and 220 m/s for SN282 and AS800, respectively.

This content is only available via PDF.
You do not currently have access to this content.