Blade row interaction effects on loss generation in compressors have received increased attention as compressor work-per-stage and blade loading have increased. Two dimensional Laser Doppler Velocimeter measurements of the velocity field in a NASA transonic compressor stage show the magnitude of interactions in the velocity field at the peak efficiency and near stall operating conditions. The experimental data are presented along with an assessment of the velocity field interactions. In the present study the experimental data are used to confirm the fidelity of a three-dimensional, time-accurate, Navier Stokes calculation of the stage using the MSU-TURBO code at the peak efficiency and near stall operating conditions. The simulations are used to quantify the loss generation associated with interaction phenomena. At the design point the stator pressure field has minimal effect of the rotor performance. The rotor wakes do have an impact on loss production in the stator passage at both operating conditions. A method for determining the potential importance of blade row interactions on performance is presented.

This content is only available via PDF.
You do not currently have access to this content.