As an aircraft engine operates from sea level take-off (SLTO) to altitude cruise, the low pressure (LP) turbine Reynolds number decreases. As Reynolds number is reduced the condition of the airfoil boundary layer shifts from bypass transition to separated flow transition. This can result in a significant loss. The LP turbine performance fall-off from SLTO to altitude cruise, due to the loss increase with reduction in Reynolds number, is referred to as a lapse rate. A considerable amount of research in recent years has been focused on understanding and reducing the loss associated with the low Reynolds number operation. A recent 3-1/2 stage LP turbine design completed a component rig test program at Honeywell. The turbine rig test included Reynolds number variation from SLTO to altitude cruise conditions. While the rig test provides detailed inlet and exit condition measurements, the individual blade row effects are not available. Multi-blade row computational fluid dynamics (CFD) analysis is used to complement the rig data by providing detailed flow field information through each blade row. A multi-blade row APNASA model was developed and solutions were obtained at the SLTO and altitude cruise rig conditions. The APNASA model predicts the SLTO to altitude lapse rate within 0.2 point compared to the rig data. The global agreement verifies the modeling approach and provides a high confidence level in the blade row flow field predictions. Additional Reynolds number investigation with APNASA will provide guidance in the LP turbine Reynolds number research areas to reduce lapse rate. To accurately predict the low Reynolds number flow in the LP turbine is a challenging task for any computational fluid dynamic (CFD) code. The purpose of this study is to evaluate the capability of a CFD code, APNASA, to predict the sensitivity of the Reynolds number in LP turbines.

This content is only available via PDF.
You do not currently have access to this content.