The aerodynamic redesign of an industrial transonic centrifugal impeller by means of CFD techniques is presented here. The computational procedure was validated by comparing numerical predictions of efficiency and work input coefficient to data from experimental tests on two different typologies of impellers: a low flow coefficient subsonic radial impeller and a high flow coefficient one. Three–dimensional, fully viscous computations were used to investigate the transonic impeller aerodynamic performance in terms of both the characteristic curves and details of the flow structure, suggesting possible improvements in the design. In order to standardize the redesign process of 3D impellers, a number of geometrical parameters, capable of describing the main features of the geometry, were identified. The original configuration was modified by varying the values of such parameters, and the impact of changes was assessed by means of 3D computations. As a result, the designer would be able to recognize which parameters have greater influence, and understand the physical effect of each change. This made it possible to establish some design rules to be exploited in future design processes.

This content is only available via PDF.
You do not currently have access to this content.