Local mass transfer measurements on a simulated high pressure turbine blade are conducted in a linear cascade with tip clearance, using a naphthalene sublimation technique. The effects of tip clearance (0.86%–6.90% of chord), are investigated at an exit Reynolds number of 5.8 × 105 and a low turbulence intensity of 0.2%. The effects of the exit Reynolds number (4–7 × 105) and the turbulence intensity (0.2% and 12.0%) are also measured for the smallest tip clearance. The effect of tip clearance on the mass transfer on the pressure surface is limited to 10% of the blade height from the tip at smaller tip clearances. At the largest tip clearance high mass transfer rates are induced at 15% of curvilinear distance (Sp/C) by the strong acceleration of the fluid on the pressure side into the clearance. The effect of tip clearance on the mass transfer is not very evident on the suction surface for curvilinear distance of Ss/C < 0.21. However, much higher mass transfer rates are caused downstream of Ss/C ≈ 0.50 by the tip leakage vortex atthe smallest tip clearance, while at the largest tip clearance, the average mass transfer is lower than that with zero tip clearance, probably because the strong leakage vortex pushes the passage vortex away from the suction surface. A high mainstream turbulence level (12.0%) increases the local mass transfer rates on the pressure surface, while a higher mainstream Reynolds number generates higher local mass transfer rates on both near-tip surfaces.
Skip Nav Destination
ASME Turbo Expo 2002: Power for Land, Sea, and Air
June 3–6, 2002
Amsterdam, The Netherlands
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
0-7918-3608-8
PROCEEDINGS PAPER
Local Mass/Heat Transfer on Turbine Blade Near-Tip Surfaces
R. J. Goldstein
R. J. Goldstein
University of Minnesota, Minneapolis, MN
Search for other works by this author on:
P. Jin
University of Minnesota, Minneapolis, MN
R. J. Goldstein
University of Minnesota, Minneapolis, MN
Paper No:
GT2002-30556, pp. 1083-1094; 12 pages
Published Online:
February 4, 2009
Citation
Jin, P, & Goldstein, RJ. "Local Mass/Heat Transfer on Turbine Blade Near-Tip Surfaces." Proceedings of the ASME Turbo Expo 2002: Power for Land, Sea, and Air. Volume 3: Turbo Expo 2002, Parts A and B. Amsterdam, The Netherlands. June 3–6, 2002. pp. 1083-1094. ASME. https://doi.org/10.1115/GT2002-30556
Download citation file:
17
Views
Related Proceedings Papers
Related Articles
Local Mass/Heat Transfer on Turbine Blade Near-Tip Surfaces
J. Turbomach (July,2003)
Effect of Endwall Motion on Blade Tip Heat Transfer
J. Turbomach (April,2003)
Aerothermodynamics of
a High-Pressure Turbine Blade With Very High Loading and Vortex
Generators
J. Turbomach (January,2012)
Related Chapters
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Aerodynamic Performance Analysis
Axial-Flow Compressors
Introduction
Design and Analysis of Centrifugal Compressors