At present, one of the most problematic topics associated with the application of optical pyrometry to in-service use on gas turbine aeroengines is the fouling of the system optics. Even though only one optical surface is, in general, exposed to the turbine environment the resulting deposition of particulates, from the combustion process or atmospheric ingestion, can greatly inhibit the benefits of utilising such an instrument for direct temperature measurement. The particulates that deposit on the pyrometer lens act as an interference filter by absorbing a portion of the thermal radiation from the target, for example the turbine blades. As a control function input, this will then bias the indicated temperature low and thus permit higher turbine temperature operation resulting in blade temperatures in excess of their intended limits. In practice, a purge air system is therefore incorporated into turbine pyrometer designs in order to minimise the number of particulates that can potentially deposit and build-up on the exposed system optics. This paper examines and compares the flow fields in two purge air designs that have already gained acceptance in-service, namely the military RB199 and civil GE90 pyrometer purging systems. This study of the airflow within actual purge designs will allow gas turbine engineers develop an understanding of the fluid flow structures and how they presently impede the achievement of sufficient lens cleanliness.
Skip Nav Destination
ASME Turbo Expo 2002: Power for Land, Sea, and Air
June 3–6, 2002
Amsterdam, The Netherlands
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
0-7918-3607-X
PROCEEDINGS PAPER
Computational Comparison of the RB199 and GE90 Pyrometer Purging Systems
Clive Kerr,
Clive Kerr
Cranfield University, Cranfield, UK
Search for other works by this author on:
Neil Oxley
Neil Oxley
Land Infrared, Dronfield, UK
Search for other works by this author on:
Clive Kerr
Cranfield University, Cranfield, UK
Paul Ivey
Cranfield University, Cranfield, UK
Neil Oxley
Land Infrared, Dronfield, UK
Paper No:
GT2002-30049, pp. 261-269; 9 pages
Published Online:
February 4, 2009
Citation
Kerr, C, Ivey, P, & Oxley, N. "Computational Comparison of the RB199 and GE90 Pyrometer Purging Systems." Proceedings of the ASME Turbo Expo 2002: Power for Land, Sea, and Air. Volume 2: Turbo Expo 2002, Parts A and B. Amsterdam, The Netherlands. June 3–6, 2002. pp. 261-269. ASME. https://doi.org/10.1115/GT2002-30049
Download citation file:
15
Views
Related Proceedings Papers
Related Articles
Simultaneous Short and Long Wavelength Infrared Pyrometer Measurements in a Heavy-Duty Gas Turbine
J. Eng. Gas Turbines Power (July,2002)
A Review of Purge Air Designs for Aeroengine-Based Optical Pyrometers
J. Turbomach (April,2002)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Reassessment
Air Engines: The History, Science, and Reality of the Perfect Engine
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential