An experimental investigation was carried out at DOE NETL on the humid air combustion process using liquid fuel to determine the effects of humidity on pollutant emissions and flame stability. Tests were conducted at pressures of up to 100 psia (690 kPa), and a typical inlet air temperature of 860 °F (733 K). The emissions and RMS pressures were documented for a relatively wide range of flame temperature from 2440–3090 °F (1610 − 1970 K) with and without added humidity. The results show more than 90 percent reduction of NOx through 10 percent humidity addition to the compressed air compared with the dry case at the same flame temperature. The substantial reduction of NOx is due to a shift in the chemical mechanisms and cannot be explained by flame temperature reduction due to added moisture since the comparison was made for the same flame temperature.

This content is only available via PDF.
You do not currently have access to this content.