Small and inexpensive jet engines are usually equipped with vaporizing fuel supply systems. This is in order to deliver low fuel flow-rates from relatively low-pressure fuel supply systems and the need for simple configuration. The difficulties associated with small engines are mainly during ignition or at high altitude re-lights, when the combustor is cold, air supply is poor, and fuel demand and pressure are low. Such conditions lead to poor atomization within the vaporizer resulting in very large droplets at its exit tip or even to a pool of liquid fuel within the combustor. Thus, there is no fuel vapor for ignition. Ignition is very difficult or even impossible under such conditions. Therefore, small engines are commonly equipped with dual fuel supply systems, either in the form of gaseous fuel for the ignition stage or with an additional higher-pressure supply line to the dedicated fuel nozzles for the purpose of ignition. Additional solutions involve the use of a large glow plug or high-energy pyrotechnic cartridges in the kilo-Joule range, to heat the combustor casing prior to ignition. The present work is concerned with the development of alternative and novel atomization systems, which would improve atomization at low pressures and consequently facilitate the ignition process, thus minimizing the need for supporting systems. The work refers to an alternative design for an existing vaporizer system of a small jet engine with 400 Nt of thrust. It focuses on an alternative design for the fuel injection within the vaporizer housing while maintaining all external dimensions and operating conditions unchanged. Three types of fuel nozzles were investigated: • a special impact atomizer, • a miniature pressure swirl atomizer, • a doublet atomizer involving two swirling nozzles (preliminary study only). Droplet size distribution under various nozzle pressure drops and air velocities were measured with Phase Doppler Particle Anemometry (PDPA) and global spray characteristics were obtained by photography. All modified atomization systems demonstrated improved performance and better atomization than the existing system. Initially, water was used as a liquid. At a later stage, the modified impact atomizer was tested and successful spark ignition was demonstrated.

This content is only available via PDF.
You do not currently have access to this content.