The focus of the present investigation is on the assessment and modeling of the local (spanning only a few blades) and global (encompassing the entire disk) effects of mistuning on the forced response of bladed disks. To this end, the concept of localization is first revisited and a new measure of this effect is introduced in terms of the number of blades the mistuning of which actually affects the forced response of a central blade. Using this new metric, it is demonstrated that high responding blades typically exhibit a high level of localization and that the reverse is not true. Thus, localization is not only disk dependent but also varies from blade-to-blade on the same disk.

This observation is then used to validate a partial mistuning approach to the determination of the maximum amplitude of response over the entire population of disks. The results of this study indicate that the largest amplification due to mistuning occurs at very strong blade-to-blade coupling levels, at the contrary of a general perception, but is associated with extremely large mistuning levels.

Finally, the above phenomenological observations are used to devise a modeling technique of both local and global components of mistuning. An example of application is presented that demonstrates the high accuracy of this approach through the entire blade-to-blade coupling domain.

This content is only available via PDF.
You do not currently have access to this content.