In a previous ASME paper experiments were reported on metal mesh bearing dampers (MMD) that were tested in a power turbine rotor at speeds up to 12,000 rpm. They were made of 0.229 mm stainless steel 304 wire mesh, compressed to 57% density, which is close to the maximum density that was economically available. After balancing, a level of vibration was achieved similar to that previously observed with squeeze film dampers. These experiments showed that the MMD could suppress vibration amplitudes of the 22.7 kg rotor at critical speeds of 4,000 rpm and 9,300 rpm. Much of the testing showed the rotor having little or no response to unbalance on coastdown through the critical speeds. The donut-shaped MMD in those tests were the only bearing supports; no squirrel cages were used. A question was raised about the feasibility of using MMD in parallel with a squirrel cage bearing support so that the stiffness can be controlled independently of the damping. This paper presents experimental results for metal mesh dampers with a squirrel cage as a parallel bearing support. Experiments with copper mesh as seal elements (on another project) had indicated that copper mesh has higher damping than stainless steel, so copper was chosen for these experiments. Both a linear viscous damping model and a hysteretic damping model were investigated. Some hysteretic damping models predict that damping depends on stiffness. A different hysteretic model turned out to be useful and promising as a prediction model for two reasons: a) it fits the measured data, and b) it predicts that the damping is not lost if the MMD is put in parallel with a steel structure such as a squirrel cage bearing support. The measurements reported here support the validity of that prediction.

This content is only available via PDF.
You do not currently have access to this content.