Gas turbine components such as combustor liners or turbine vanes are subject to regions of high stress-concentration, e.g. attachment to the frame or at cooling holes. Ceramic matrix composites (CMCs) are potential materials for high temperature applications in gas turbines. They offer some capability to relieve stress at regions of high stress-concentration via matrix damage accumulation. In this study notch sensitivity was examined for woven SiC fiber reinforced, melt-infiltrated SiC matrix composites with a BN interphase, utilizing either Hi-Nicalon™ fibers or the stiffer Sylramic® fibers. The double-edge notched tensile test approach was used for a wide range of notch sizes and specimen widths. Both composite systems exhibited mild notch sensitivity similar to other CMC systems. Acoustic emission, detected during the tensile tests, indicated that matrix cracking occurred around notches at net-section stresses below the stress where matrix cracking first occurs in unnotched specimens. However, thermoelastic stress analysis did not show any measurable stress relief around notches after the specimens were preloaded.

This content is only available via PDF.
You do not currently have access to this content.