The development of lean-premixed catalytic reactors for ultra-low emissions combustors in gas turbines presents many design and operability challenges that are not addressed with conventional steady-state reactor models with one-step chemistry mechanisms. These challenges include transient light-off from low temperatures, catalyst deactivation, and hysteresis in catalytic activity. To address these issues, a transient 1-D reactor model with a validated multi-step surface chemistry mechanism has been developed to explore such behavior in catalytic combustors. The surface chemistry sub-model has been incorporated for investigating lean catalytic combustion of CH4 on Pd-based catalysts. The current study investigated the effects of operating conditions — such as pressure, inlet temperature, and velocity — on catalytic reactor ignition and deactivation. The transient modeling provides curves for reactor light-off for a range of inlet pressures and velocities and reveals conditions wherein Pd-catalyst undergoes reduction/deactivation. Model results are compared with some experimental measurements and implications for catalytic combustor design and operation for gas turbine applications are discussed.

This content is only available via PDF.
You do not currently have access to this content.