A CFD-based design method for transonic axial compressor blades was developed based on three-dimensional Navier-Stokes flow physics. The method starts with a three-dimensional flow analysis of an initial blade, followed by the sectional design optimization performed on a grid plane at a span station with spanwise flux components held fixed. This approach allows the sectional design to include the three-dimensional effects in compressor flows and thus overcome the difficulties associated with the use of quasi-three-dimensional flow physics in sectional designs. The “sectional three-dimensional” analysis at a span station, regardless of the initial flow condition, produced a flow solution nearly identical to the three-dimensional flow solution at the span station. After the validation of the sectional three-dimensional analysis, the developed design method was successfully applied to multiple span stations of NASA Rotor 37 blade in the inverse mode of finding a target geometry corresponding to a specified target pressure distribution. The method was also applied to optimize the adiabatic efficiencies of the blade section of Rotor 37 at 70 percent span station. The design results from two design attempts with different initial geometry indicate that there is not a lot of room for improvement for the blade section of Rotor 37 at 70 percent span station, but the present design method is capable of producing a large performance gain for a blade with lower efficiency.

This content is only available via PDF.
You do not currently have access to this content.