The development of integrated coal gasification combined cycle (IGCC) systems ensures higher thermal efficiency and environmentally sound options for supplying future coal utilizing power generation needs. The Japanese government and electric power industries in Japan promoted research and development of an IGCC system using an air-blown entrained-flow coal gasifier. On the other hand, Europe and the United States are now developing the oxygen-blown IGCC demonstration plants.

Gasified coal fuel produced in an oxygen-blown entrained-flow coal gasifier, has a calorific value of 8–13MJ/m3 which is only 1/5–1/3 that of natural gas. However, the flame temperature of medium-Btu gasified coal fuel is higher than that of natural gas and so NOx production from nitrogen fixation is expected to increase significantly. In the oxygen-blown IGCC, a surplus nitrogen produced in the air-separation unit (ASU) is premixed with gasified coal fuel (medium-Btu fuel) and injected into the combustor, to reduce thermal-NOx production and to recover the power used for the ASU. In this case, the power to compress nitrogen increases. Low NOx emission technology which is capable of decreasing the power to compress nitrogen is a significant advance in gas turbine development with an oxygen-blown IGCC system. Analyses confirmed that the thermal efficiency of the plant improved by approximately 0.3 percent (absolute) by means of nitrogen direct injection into the combustor, compared with a case where nitrogen is premixed with gasified coal fuel before injection into the combustor.

In this study, based on the fundamental test results using a small diffusion burner and a model combustor, we designed the combustor in which the nitrogen injection nozzles arranged on the burner were combined with the lean combustion technique for low-NOx emission. In this way, we could reduce the high temperature region, where originated the thermal-NOx production, near the burner positively. And then, a combustor with a swirling nitrogen injection function used for a gas turbine, was designed and constructed, and its performance was evaluated under pressurized conditions of actual operations using a simulated gasified coal fuel. From the combustion test results, the thermal-NOx emission decreased under 11ppm (corrected at 16% O2), combustion efficiency was higher than 99.9% at any gas turbine load. Moreover, there was different effects of pressure on thermal-NOx emission in medium-Btu fuel fired combustor from the case of natural gas fired combustor.

This content is only available via PDF.
You do not currently have access to this content.