A multistage turbomachine has inherently unsteady flow fields due to the relative motion between rotor and stator airfoils, which lead to viscous and inviscid interactions between the blade rows. Additionally, the radial clearance between casing and rotor strongly influences the 3D flow field and the loss generation in turbomachines. The objective of the presented study is to investigate the effects of tip clearance on secondary flow phenomena and, in consequence, on the performance of a 1-1/2 stage axial turbine. The low aspect ratio of the blades and their prismatic design leads to a high degree of secondary flows and three-dimensionality. Extended measurements of the flow field behind each blade row with pneumatic and hotwire probes have been conducted for three different tip clearances. Experimental results reveal significant change of flow behavior and turbine performance with increasing tip clearance.

This content is only available via PDF.
You do not currently have access to this content.