The paper focuses on the unsteady pressure field measured around the rotor mid-span profile of the VKI Brite transonic turbine stage. The understanding of the complex unsteady flow field is supported by a quasi-3D unsteady Navier-Stokes computation using a k-? turbulence model and a modified version of the Abu-Ghannam and Shaw correlation for the onset of transition.

The agreement between computational and experimental results is satisfactory. They both reveal the dominance of the vane-shock in the interaction. For this reason, it is difficult to identify the influence of vane-wake ingestion in the rotor passage from the experimental data. However, the computations allow to draw some useful conclusions in this respect.

The effect of the variation of the rotational speed, the stator-rotor spacing and the stator trailing edge coolant flow ejection is investigated and the unsteady blade force pattern is analyzed.

This content is only available via PDF.
You do not currently have access to this content.