The high thermal conduction resistances of lithium-ion batteries severely limits the effectiveness of conventional external thermal management systems. To remove heat from the insulated interior portions of the cell, a large temperature difference is required across the cell, and the center of the electrode stack can exceed the thermal runaway onset temperature even under normal cycling conditions. One potential solution is to remove heat locally inside the cell by evaporating a volatile component of the electrolyte. In this system, a high vapor pressure co-solvent evaporates at a low temperature prior to triggering thermal runaway. The vapor generated is transported to the skin of the cell, where it is condensed and transported back to the internal portion of the cell via surface tension forces. For this system to function, a co-solvent that has a boiling point below the thermal runaway onset temperature must also allow the cell to function under normal operating conditions. Low boiling point hydrofluoroethers (HFE) were first used by Arai to reduce LIB electrolyte flash points, and have been proven to be compatible with LIB chemistry. In the present study, HFE-7000 and ethyl methyl carbonate (EMC) 1:1 by volume are used to solvate 1.0 M LiTFSI to produce a candidate electrolyte for the proposed cooling system. Copper antimonide (Cu2Sb) and lithium iron phosphate (LiFePO4) are used in a full cell architecture with the candidate electrolyte in a custom electrolyte boiling facility. The facility enables direct viewing of the vapor generation within the full cell and characterizes the galvanostatic electrochemical performance. Test results show that the LFP/Cu2Sb cell is capable of operation even when a portion of the more volatile HFE-7000 is continuously evaporated.
Skip Nav Destination
ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2016 Power Conference and the ASME 2016 10th International Conference on Energy Sustainability
June 26–30, 2016
Charlotte, North Carolina, USA
Conference Sponsors:
- Advanced Energy Systems Division
ISBN:
978-0-7918-5024-4
PROCEEDINGS PAPER
Multi-Functional Electrolyte for Thermal Management of Lithium-Ion Batteries Available to Purchase
Kevin Westhoff,
Kevin Westhoff
Colorado State University, Fort Collins, CO
Search for other works by this author on:
Todd M. Bandhauer
Todd M. Bandhauer
Colorado State University, Fort Collins, CO
Search for other works by this author on:
Kevin Westhoff
Colorado State University, Fort Collins, CO
Todd M. Bandhauer
Colorado State University, Fort Collins, CO
Paper No:
FUELCELL2016-59460, V001T01A002; 7 pages
Published Online:
November 1, 2016
Citation
Westhoff, K, & Bandhauer, TM. "Multi-Functional Electrolyte for Thermal Management of Lithium-Ion Batteries." Proceedings of the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2016 Power Conference and the ASME 2016 10th International Conference on Energy Sustainability. ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. Charlotte, North Carolina, USA. June 26–30, 2016. V001T01A002. ASME. https://doi.org/10.1115/FUELCELL2016-59460
Download citation file:
19
Views
Related Proceedings Papers
Related Articles
Effect of Liquid Properties on Phase-Change Heat Transfer in Porous Wick Structures
J. Heat Transfer (March,2016)
Modified Silicon Anode for Improved Low-Temperature Performance of Lithium-Ion Batteries
J. Electrochem. En. Conv. Stor (February,2024)
Numerical Simulation of Evaporating Two-Phase Flow in a High-Aspect-Ratio Microchannel with Bends
J. Heat Transfer (August,2017)
Related Chapters
Chitosan-Based Drug Delivery Systems
Chitosan and Its Derivatives as Promising Drug Delivery Carriers
On the Evaluation of Thermal and Mechanical Factors in Low-Speed Sliding
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Two-Stage Liquid Desiccant Dehumidification∕Regeneration
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)