In this paper, a multi-dimensional dynamic model of vanadium Redox Flow Batteries (RFB) is employed to predict battery performance and internal operating condition during charge and discharge. The model consists of a set of partial differential equations of mass, momentum, species, charges, and energy conservation, in conjunction with the electrode’s electrochemical reaction kinetics. After validated against experimental data for a vanadium RFB, flow field, temperature distribution, and reactant evolution are presented. The developed numerical tool is extremely useful in optimizing RFB design and control.

This content is only available via PDF.
You do not currently have access to this content.