To achieve optimal performance of proton exchange membrane (PEM) fuel cells, effective water management is crucial. Cells need to be fabricated to operate over wide ranges of current density and cell temperature. To investigate these design and operational conditions, the present experiment utilized neutron radiography for measurement of in-situ water volumes of operating PEM fuel cells under varying operating conditions. Fuel cell performance was found to be generally inversely correlated to liquid water volume in the active area. High water concentrations restrict narrow flow field channels, limiting the reactant flow, and causing the development of performance-reducing liquid water blockages (slugs). The analysis was performed both quantitatively and qualitatively to compare the overall liquid water volume within the cell to the flow field geometry. The neutron image analysis results revealed interesting trends related to water volume as a function of time. At temperatures greater than 25°C, the total liquid water volume at start-up in the active area was the lowest at 1.5 A/cm2. At 25°C, 0.1 A/cm2 performed with the least amount of liquid water accumulation. However, as the reaction progressed at temperatures above 25°C, there was a crossover point where 0.1 A/cm2 accumulated less water than 1.5 A/cm2. The higher the temperature, the longer the time required to reach this crossover point. Results from the current density analysis showed a minimization of water slugs at 1.5 A/cm2, while the temperature analysis showed unexpectedly that, independent of current density, the condition with lowest water volume was always 35°C.

This content is only available via PDF.
You do not currently have access to this content.