The gas diffusion layers (GDLs) are key components in proton exchange membrane fuel cells and understanding fluid flow through them plays a significant role in improving fuel cell performance. We used a combination of multiple-relaxation time (MRT) lattice Boltzmann method (LBM) and X-ray micro tomography imaging technology to compare results on dependence of the permeability calculation on the different system size of the computational gas diffusion layer sample. The micro-structures of the carbon paper (HP_1.76) and carbon cloth (HP_1.733) GDL were all digitizing 3D images acquired by X-ray computed micro-tomography at a resolution of 1.76 and 1.733 microns meter respectively, and the fluid flow was simulated by applying pressure gradient in both the through-plane and in-plane direction respectively. The lattice Boltzmann method for permeability calculation has already been tested in our previous work. In this work, we will focus on the permeability calculation of the realistic gas diffusion layer samples depend on the different size samples. The results show the permeability increases with fluctuations as the porosity rises. All the permeability and porosity converge to the value of large size sample that can be regarding a representative volume element. As the porosity and permeability of these Porous samples differs significantly for each other, the anisotropic permeability is nearly same for each one. We can choose part of the sample to calculate the characters if the sample is too big to calculate. We systematically study the effect of system size and periodic boundary condition and validate Darcy’s law from the linear dependence of the flux on the body force exerted.
Skip Nav Destination
ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th International Conference on Energy Sustainability
June 30–July 2, 2014
Boston, Massachusetts, USA
Conference Sponsors:
- Advanced Energy Systems Division
ISBN:
978-0-7918-4588-2
PROCEEDINGS PAPER
Comparing the Permeability Calculation Between Different System Size of the Computational Gas Diffusion Layer Sample in PEMFC
Yuan Gao
Yuan Gao
Tongji University, Shanghai, China
Search for other works by this author on:
Yuan Gao
Tongji University, Shanghai, China
Paper No:
FuelCell2014-6323, V001T06A001; 7 pages
Published Online:
October 28, 2014
Citation
Gao, Y. "Comparing the Permeability Calculation Between Different System Size of the Computational Gas Diffusion Layer Sample in PEMFC." Proceedings of the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th International Conference on Energy Sustainability. ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. Boston, Massachusetts, USA. June 30–July 2, 2014. V001T06A001. ASME. https://doi.org/10.1115/FuelCell2014-6323
Download citation file:
17
Views
Related Proceedings Papers
Related Articles
An X-Ray Tomography Based Lattice Boltzmann Simulation Study on Gas Diffusion Layers of Polymer Electrolyte Fuel Cells
J. Fuel Cell Sci. Technol (June,2010)
An Improved MRT Lattice Boltzmann Model for Calculating Anisotropic Permeability of Compressed and Uncompressed Carbon Cloth Gas Diffusion Layers Based on X-Ray Computed Micro-Tomography
J. Fuel Cell Sci. Technol (August,2012)
Effect of Compression on the Water Management of a Proton Exchange Membrane Fuel Cell With Different Gas Diffusion Layers
J. Fuel Cell Sci. Technol (April,2010)
Related Chapters
Insulating Properties of W-Doped Ga2O3 Films Grown on Si Substrate for Low-K Applications
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)
Dimensional Measurements and Calibration
Metrology and Instrumentation: Practical Applications for Engineering and Manufacturing
Experimental Characterization of a Cavitating Orifice
Proceedings of the 10th International Symposium on Cavitation (CAV2018)