Temperature distribution in a fuel cell significantly affects the performance and efficiency of the fuel cell system. Particularly, in low temperature fuel cells, improvement of the system requires addressing the heat management issues, which reveals the importance of developing thermal models. In this study, a 3D numerical thermal model is presented to analyze heat transfer and predict the temperature distribution in air-cooled proton exchange membrane fuel cells (PEMFC). In the modeled fuel cell stack, forced air flow supplies oxidant as well as cooling. Conservation equations of mass, momentum, and energy are solved in the oxidant channel, whereas energy equation is solved in the entire domain, including the gas diffusion layers (GDLs) and separator plates, which play a significant role in heat transfer. A parametric study is done to investigate the effect of various operating conditions on maximum cell temperature. The results are further validated with experiment. This model provides a theoretical foundation for thermal analysis of air-cooled stacks, where temperature non-uniformity is high and thermal management and stack cooling is a significant engineering challenge.

This content is only available via PDF.
You do not currently have access to this content.