The ultimate goal of cold start of hydrogen-powered polymer electrolyte fuel cell vehicles is to minimize the significant system thaw energy requirement and to achieve the short time period desired for freeze start (e.g. less than 30 seconds) in a subfreezing environment. As part of an effort to improve cold start capability for fuel cell vehicles, this work presents a new thaw-at-start strategy using electrical characteristics of vanadium oxide thin films as self-heating source at sub-zero temperature. Vanadium-based thin film coated on the surface of flat bipolar plates (e.g. carbon-based graphite and metallic bipolar plates) have been synthesized by a dip-coating method via aqueous sol-gel chemistry. Subsequently, the detailed in-/ex-situ analyses of the thin films have been carried out using diverse diagnostic techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) to investigate the chemical composition, crystallinity, and microstructure. In addition, electrical switching characteristics of the thin films on bipolar plates was cautiously observed over a temperature range from −20°C to 80°C by means of 4-point probes installed in a thermo -hygrostat. By doing so, it has been possible to correctly infer the relationship between a tendency of the thermally-induced electrical switching hysteresis and bipolar plate materials. Also, comprehensive theoretical study on the basis of the experimental results have been performed to estimate the heat dissipation rate by Joule heating from the solid thin films on bipolar plates for the rapid cold-start operation of fuel cell vehicles.
Skip Nav Destination
ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability
August 7–10, 2011
Washington, DC, USA
Conference Sponsors:
- Advanced Energy Systems Division
ISBN:
978-0-7918-5469-3
PROCEEDINGS PAPER
Experimental Study of Electrical Switching Characteristics of Vanadium Oxide Thin Films on Bipolar Plates for Improving Thaw-at-Start Available to Purchase
Hye-Mi Jung,
Hye-Mi Jung
Hanyang University, Seoul, South Korea
Search for other works by this author on:
Jung-Hun Noh,
Jung-Hun Noh
Hanyang University, Seoul, South Korea
Search for other works by this author on:
Sukkee Um
Sukkee Um
Hanyang University, Seoul, South Korea
Search for other works by this author on:
Hye-Mi Jung
Hanyang University, Seoul, South Korea
Jung-Hun Noh
Hanyang University, Seoul, South Korea
Sukkee Um
Hanyang University, Seoul, South Korea
Paper No:
FuelCell2011-54561, pp. 293-299; 7 pages
Published Online:
March 22, 2012
Citation
Jung, H, Noh, J, & Um, S. "Experimental Study of Electrical Switching Characteristics of Vanadium Oxide Thin Films on Bipolar Plates for Improving Thaw-at-Start." Proceedings of the ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability. ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology. Washington, DC, USA. August 7–10, 2011. pp. 293-299. ASME. https://doi.org/10.1115/FuelCell2011-54561
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Factors Affecting the Formation of Carbon Film on the Stainless Steels for the Bipolar Plate of Polymer Electrolyte Fuel Cells
J. Fuel Cell Sci. Technol (June,2011)
Mixed-Fuels Fuel Cell Running on Methane-Air Mixture
J. Fuel Cell Sci. Technol (February,2006)
Partially Oxidized Tantalum Carbonitride as New Cathodes Without Platinum Group Metals for Polymer Electrolyte Fuel Cell
J. Fuel Cell Sci. Technol (June,2011)
Related Chapters
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Insulating Properties of W-Doped Ga2O3 Films Grown on Si Substrate for Low-K Applications
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)
Chitosan-Based Drug Delivery Systems
Chitosan and Its Derivatives as Promising Drug Delivery Carriers