Dead-ended anode (DEA) operation of Polymer Electrolyte Fuel Cell (PEFC) can simplify the fuel cell auxiliary and reduce system cost, however durability and lifetime in this operating mode requires further study. In this work, we investigate the electrode and membrane degradations of one 50 cm2 active area fuel cell under DEA operation using a combination of post-mortem evaluation and in-situ performance evaluation protocol. We experimentally identify multiple degradation patterns using a cell which we have previously modeled and experimentally verified the spatio-temporal patterns associated with the anode water flooding and nitrogen blanketing. The change in cell voltage and internal resistance during operation and ex situ Scanning Electron Microscope (SEM) images of aged electrode/membrane are analysed to determine and characterize the degradation of the membrane electrode assembly (MEA). Chemical degradations including carbon corrosion in the catalyst layer and membrane decomposition are found after operating the cell with a DEA. Mechanical degradations including membrane delamination are also observed. Unique features of DEA operation including fuel starvation/nitrogen blanketing in the anode and uneven local water/current distribution, are considered as culprits for degradation.

This content is only available via PDF.
You do not currently have access to this content.