In this paper, through-plane liquid water distribution is analyzed for two polymer electrolyte membrane fuel cell (PEMFC) gas diffusion layers (GDLs). The experiments were conducted in an ex situ flow field apparatus with 1 mm square channels at two distinct flow rates to mimic water production rates of 0.2 and 1.5 A/cm2 in a PEMFC. Synchrotron radiography, which involves high intensity monochromatic X-ray beams, was used to obtain images with a spatial and temporal resolution of 20–25 μm and 0.9 s, respectively. Freudenberg H2315 I6 exhibited significantly higher amounts of water than Toray TGP-H-090 at the instance of breakthrough, where breakthrough describes the event in which liquid water reaches the flow fields. While Freudenberg H2315 I6 exhibited a significant overall decrease in liquid water content throughout the GDL shortly after breakthrough, Toray TGP-H-090 appeared to retain breakthrough water-levels post-breakthrough. It was also observed that the amount of liquid water content in Toray TGP-H-090 (10%.wt PTFE) decreased significantly when the liquid water injection rate increased from 1 μL/min to 8 μL/min.

This content is only available via PDF.
You do not currently have access to this content.