Two of the largest barriers to PEMFC commercialization are the materials costs for individual components, especially platinum catalyst, and the fact that few large-scale manufacturing capabilities currently exist. This paper focuses on the development of a testbed which will be used for evaluating coating technologies for use in the manufacture of polymer electrolyte membrane (PEM) fuel cell electrodes. More specifically, the focus is on diffusion electrode architecture, in which the catalyst layer is applied to a gas diffusion layer (GDL) rather than on the membrane. These electrodes are used for both low- and high-temperature PEM fuel cells. A flexible web coating testbed has been designed and built to allow for testing of different gas diffusion electrode (GDE) and GDL deposition methods. This testbed, which is approximately two meters in length, includes a variety of both coating and drying capabilities as well as additional space for quality measurement and control system testing. Testbed capabilities and planned experimentation is discussed in detail. In the future, various non-contact deposition methods for the microlayer and catalyst inks will be investigated (e.g., direct spray, ultrasonic spray) to determine those that will provide higher throughput and repeatability through increased process control capability, while improving electrode performance.

This content is only available via PDF.
You do not currently have access to this content.