It is expected that fuel cells will play a significant role in a future sustainable energy system. They are energy efficient, fuel can be produced nearly locally and, when a renewable fuel such as ethanol, methanol and biogas is used, there are no net emissions of greenhouse gases. Fuel cells have during recent years various progresses, but the technology is still in the early phases of development, however the potential is enormous. In this study a CFD approach (COMSOL Multiphysics) is employed to investigate effects of different fuels such as biogas, pre-reformed methanol, ethanol and natural gas. The fuel composition and inlet temperature are varied to study the effect on temperature distribution, molar fraction distribution and reforming reaction rates within a singe cell for an intermediate temperature solid oxide fuel cell (IT-SOFC). The developed model is based on the governing equations of heat-, mass- and momentum transport, which are solved together with global reforming kinetics. The result shows that the heat generation within the cell depends mainly on the initial fuel composition and the inlet temperature. The water-gas shift reaction proceeds to the right as hydrogen is consumed and water generated in the electrochemical reactions at the anodic three-phase boundaries.
Skip Nav Destination
ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology
June 14–16, 2010
Brooklyn, New York, USA
Conference Sponsors:
- Advanced Energy Systems Division
ISBN:
978-0-7918-4405-2
PROCEEDINGS PAPER
Modeling Analysis of Different Renewable Fuels in an Anode Supported SOFC
Martin Andersson,
Martin Andersson
Lund University, Lund, Sweden
Search for other works by this author on:
Hedvig Paradis,
Hedvig Paradis
Lund University, Lund, Sweden
Search for other works by this author on:
Jinliang Yuan,
Jinliang Yuan
Lund University, Lund, Sweden
Search for other works by this author on:
Bengt Sunde´n
Bengt Sunde´n
Lund University, Lund, Sweden
Search for other works by this author on:
Martin Andersson
Lund University, Lund, Sweden
Hedvig Paradis
Lund University, Lund, Sweden
Jinliang Yuan
Lund University, Lund, Sweden
Bengt Sunde´n
Lund University, Lund, Sweden
Paper No:
FuelCell2010-33044, pp. 43-54; 12 pages
Published Online:
December 3, 2010
Citation
Andersson, M, Paradis, H, Yuan, J, & Sunde´n, B. "Modeling Analysis of Different Renewable Fuels in an Anode Supported SOFC." Proceedings of the ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASME 2010 8th International Fuel Cell Science, Engineering and Technology Conference: Volume 2. Brooklyn, New York, USA. June 14–16, 2010. pp. 43-54. ASME. https://doi.org/10.1115/FuelCell2010-33044
Download citation file:
9
Views
Related Proceedings Papers
Related Articles
Modeling Analysis of Different Renewable Fuels in an Anode Supported SOFC
J. Fuel Cell Sci. Technol (June,2011)
Biogas Combustion in Premixed Flames or Electrochemical Oxidation in SOFC: Exergy and Emission Comparison
J. Energy Resour. Technol (June,2013)
Modeling of Overpotentials in an Anode-Supported Planar SOFC Using a Detailed Simulation Model
J. Fuel Cell Sci. Technol (October,2011)
Related Chapters
Numerical Study on a Novel SOFC with Bi-Layer Interconnector
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
An Easy-to-Approach Comprehensive Model and Computation for SOFC Performance and Design Optimization
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Part A: Farm Waste to Energy
Biomass and Waste Energy Applications