The main objective of this work was to develop fuel reforming technologies to produce a H2-rich synthesis gas to power a solid oxide fuel cell being developed by US DOE for applications like diesel auxiliary power units. In order to accomplish this objective the following efforts were required: 1) examination of the effect of oxygen-conducting supports on reforming catalyst performance, 2) demonstration of the long-term stability under reforming conditions of an oxide powder catalyst deposited onto an oxygen-conducting support, 3) fabrication of a catalyst system by depositing the active catalyst and oxygen-conducting material onto a monolithic support structure for scaled-up reforming tests, 4) demonstration of the scaled-up reforming tests using the monolithic reactor. A successful 1,000-hr diesel reforming test was completed on a powder pyrochlore catalyst developed by NETL deposited onto an oxygen-conducting support. This test demonstrated that the catalyst and support compositions developed have significant potential in a commercial reforming application for the production of synthesis gas. Transforming this powder catalyst into a commercially viable form was the next major step to the development of a usable product. An alumina monolith structure coated with both the oxygen-conducting support and the active pyrochlore phase was fabricated and its performance was validated by short term partial oxidation (POX) tests on pump diesel, and in an integrated reformer-fuel cell test for 100 hrs on a biodiesel fuel under oxidative steam reforming (OSR) conditions.

This content is only available via PDF.
You do not currently have access to this content.