Research on ammonia borane (AB, NH3BH3) has shown it to be a promising material for chemical hydrogen storage in PEM fuel cell applications. AB was selected by DOE’s Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to 19.6% by weight for the release of three molar equivalents of hydrogen gas) and its stability under typical ambient conditions. A model of a bead reactor system was developed to study AB system performance in an automotive application and estimate the energy, mass, and volume requirements for this off-board regenerable hydrogen storage material. The system includes feed and product tanks, hot and cold augers, a ballast tank/reactor, a H2 burner and a radiator. One-dimensional models based on conservation of species and energy were used to predict important state variables such as reactant and product concentrations, temperatures of various components, flow rates, and pressure in the reactor system. The flow rate of AB into the process and the system pressure were governed by a control system which is modeled as an independent subsystem. Each subsystem in the model was coded as a C language S-function and implemented in the Matlab/Simulink environment. Preliminary system simulation results for a start-up case and for a transient drive cycle indicate appropriate trends in the reactor system dynamics.
Skip Nav Destination
ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology
June 14–16, 2010
Brooklyn, New York, USA
Conference Sponsors:
- Advanced Energy Systems Division
ISBN:
978-0-7918-4404-5
PROCEEDINGS PAPER
Systems Modeling of Ammonia Borane Bead Reactor for Off-Board Regenerable Hydrogen Storage in PEM Fuel Cell Applications
Kriston Brooks,
Kriston Brooks
Pacific Northwest National Laboratory, Richland, WA
Search for other works by this author on:
Maruthi Devarakonda,
Maruthi Devarakonda
Pacific Northwest National Laboratory, Richland, WA
Search for other works by this author on:
Scot Rassat,
Scot Rassat
Pacific Northwest National Laboratory, Richland, WA
Search for other works by this author on:
Dale King,
Dale King
Pacific Northwest National Laboratory, Richland, WA
Search for other works by this author on:
Darrell Herling
Darrell Herling
Pacific Northwest National Laboratory, Richland, WA
Search for other works by this author on:
Kriston Brooks
Pacific Northwest National Laboratory, Richland, WA
Maruthi Devarakonda
Pacific Northwest National Laboratory, Richland, WA
Scot Rassat
Pacific Northwest National Laboratory, Richland, WA
Dale King
Pacific Northwest National Laboratory, Richland, WA
Darrell Herling
Pacific Northwest National Laboratory, Richland, WA
Paper No:
FuelCell2010-33272, pp. 729-734; 6 pages
Published Online:
December 3, 2010
Citation
Brooks, K, Devarakonda, M, Rassat, S, King, D, & Herling, D. "Systems Modeling of Ammonia Borane Bead Reactor for Off-Board Regenerable Hydrogen Storage in PEM Fuel Cell Applications." Proceedings of the ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASME 2010 8th International Fuel Cell Science, Engineering and Technology Conference: Volume 1. Brooklyn, New York, USA. June 14–16, 2010. pp. 729-734. ASME. https://doi.org/10.1115/FuelCell2010-33272
Download citation file:
13
Views
Related Proceedings Papers
Related Articles
Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications
J. Fuel Cell Sci. Technol (December,2011)
Design, Fabrication, and Performance Analysis of a Passive Micro-PEM-Fuel-Cell Stack
J. Fuel Cell Sci. Technol (August,2009)
Performance Assessment of Turbocharged Pem Fuel Cell Systems for Civil Aircraft Onboard Power Production
J. Eng. Gas Turbines Power (March,2008)
Related Chapters
Constructing Dynamic Event Trees from Markov Models (PSAM-0369)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Summary
Heat Transfer & Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach