In this paper, a computational model is constituted based on the microstructural features of polymer electrolyte membrane (PEM). Assuming that the interaction between the water molecular and PEM molecular is quite weak, the cluster inside PEM is considered as void and the homogenization method is applied to constitute a unit cell model in which several voids are contained to represent the periodic microstructure of PEM. On the other hand, to account for the nonaffine movement of the molecular chains of PEM, the number of segment in a single chain is proposed as a function of the local stretch of the molecular chain and the constitutive equation of the matrix of PEM is constituted based on the nonaffine molecular chain model. It is found that this proposed model can reproduce the strain softening deformation behavior of PEM very well. Furthermore, a series simulations based on this proposed model are performed to discuss the effect of the water content and that of the triaxiality of macroscopic loading condition on the mechanical behavior of PEM. The results show that a relative quick development of the number of segments in a single chain is observed in the case of high water content and high triaxiality loading condition.
Skip Nav Destination
ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology
June 14–16, 2010
Brooklyn, New York, USA
Conference Sponsors:
- Advanced Energy Systems Division
ISBN:
978-0-7918-4404-5
PROCEEDINGS PAPER
Computational Characterization of Mechanical Behavior of Polymer Electrolyte Membrane Based on Nonaffine Molecular Chain Model
Isamu Riku,
Isamu Riku
Osaka Prefecture University, Sakai, Osaka, Japan
Search for other works by this author on:
Kyosuke Morizane,
Kyosuke Morizane
Osaka Prefecture University, Sakai, Osaka, Japan
Search for other works by this author on:
Koji Mimura
Koji Mimura
Osaka Prefecture University, Sakai, Osaka, Japan
Search for other works by this author on:
Isamu Riku
Osaka Prefecture University, Sakai, Osaka, Japan
Kyosuke Morizane
Osaka Prefecture University, Sakai, Osaka, Japan
Koji Mimura
Osaka Prefecture University, Sakai, Osaka, Japan
Paper No:
FuelCell2010-33271, pp. 719-727; 9 pages
Published Online:
December 3, 2010
Citation
Riku, I, Morizane, K, & Mimura, K. "Computational Characterization of Mechanical Behavior of Polymer Electrolyte Membrane Based on Nonaffine Molecular Chain Model." Proceedings of the ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASME 2010 8th International Fuel Cell Science, Engineering and Technology Conference: Volume 1. Brooklyn, New York, USA. June 14–16, 2010. pp. 719-727. ASME. https://doi.org/10.1115/FuelCell2010-33271
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
A Multiscale Simulation Approach for the Mechanical Response of Copper/Nickel Nanofoams With Experimental Validation
J. Eng. Mater. Technol (January,2022)
Effect of Bridging Groups on Sulfonated Poly(imide-Siloxane) for Application in Proton Exchange Membrane
J. Fuel Cell Sci. Technol (April,2010)
Investigation of Mechanical Behavior of Membrane in Polymer Electrolyte Fuel Cells Subject to Dynamic Load Changes
J. Fuel Cell Sci. Technol (June,2014)
Related Chapters
In Situ Observations of the Failure Mechanisms of Hydrided Zircaloy-4
Zirconium in the Nuclear Industry: 20th International Symposium
Polycrystalline Simulations of In-Reactor Deformation of Zircaloy-4 Cladding Tubes during Nominal Operating Conditions
Zirconium in the Nuclear Industry: 20th International Symposium
Introduction to Stress and Deformation
Introduction to Plastics Engineering