A portable Proton Exchange Membrane (PEM) fuel cell-battery power system with hydrogen as fuel has higher power density than conventional batteries and is one of the promising environment-friendly small-scale alternative energy sources. Power management system, as the major control system in the portable PEM fuel cell-battery power system, directly controls the fuel cell stack sub-system, battery charging sub-system and power distribution control sub-system. How to design the power management system is one of the critical issues in optimizing the power system performance, efficiency and components life time. In this study, a set of portable PEM fuel cell-battery system model is introduced. A power management approach with an emergency shutdown function is presented, which not only balances the power distribution between fuel cell and battery at prescribed load condition, but also controls the battery charging cycles to extend the battery life. The simulation results shows the proposed power management approach can effectively control the system performance as expected.

This content is only available via PDF.
You do not currently have access to this content.