The gas diffusion layer (GDL) in a proton exchange membrane (PEM) fuel cell has a porous structure with anisotropic and non-homogenous properties. The objective of this research is to develop a PEM fuel cell model where transport phenomena in the GDL are simulated based on GDL’s pore structure. The GDL pore structure was obtained by using a scanning electron microscope (SEM). GDL’s cross-section view instead of surface view was scanned under the SEM. The SEM image was then processed using an image processing tool to obtain a two dimensional computational domain. This pore structure model was then coupled with an electrochemical model to predict the overall fuel cell performance. The transport phenomena in the GDL were simulated by solving the Navier-Stokes equation directly in the GDL pore structure. By comparing with the testing data, the fuel cell model predicted a reasonable fuel cell polarization curve. The pore structure model was further used to calculate the GDL permeability. The numerically predicted permeability was close to the value published in the literature. A future application of the current pore structure model is to predict GDL thermal and electric related properties.
Skip Nav Destination
ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology
June 14–16, 2010
Brooklyn, New York, USA
Conference Sponsors:
- Advanced Energy Systems Division
ISBN:
978-0-7918-4404-5
PROCEEDINGS PAPER
Pore Structure Modeling of Flow in Gas Diffusion Layers of Proton Exchange Membrane Fuel Cells Available to Purchase
Zhongying Shi,
Zhongying Shi
Oakland University, Rochester, MI
Search for other works by this author on:
Xia Wang
Xia Wang
Oakland University, Rochester, MI
Search for other works by this author on:
Zhongying Shi
Oakland University, Rochester, MI
Xia Wang
Oakland University, Rochester, MI
Paper No:
FuelCell2010-33107, pp. 525-531; 7 pages
Published Online:
December 3, 2010
Citation
Shi, Z, & Wang, X. "Pore Structure Modeling of Flow in Gas Diffusion Layers of Proton Exchange Membrane Fuel Cells." Proceedings of the ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASME 2010 8th International Fuel Cell Science, Engineering and Technology Conference: Volume 1. Brooklyn, New York, USA. June 14–16, 2010. pp. 525-531. ASME. https://doi.org/10.1115/FuelCell2010-33107
Download citation file:
9
Views
Related Proceedings Papers
Related Articles
Numerical Modeling of Polymer Electrolyte Fuel Cells With Analytical and Experimental Validation
J. Electrochem. En. Conv. Stor (August,2019)
Modeling, Development, and Testing of a 2 MW Polymeric Electrolyte Membrane Fuel Cell Plant Fueled With Hydrogen From a Chlor-Alkali Industry
J. Electrochem. En. Conv. Stor (November,2019)
Multi-Resolution PEM Fuel Cell Model Validation and Accuracy Analysis
J. Fuel Cell Sci. Technol (February,2006)
Related Chapters
Mathematical Background
Vibrations of Linear Piezostructures
Effects of Metallic Plate and Objects on Performance of Inverted F Antenna for ISM Band Application
International Conference on Computer and Automation Engineering, 4th (ICCAE 2012)
Joint Polarization Information for Fast Multi-Target Localization in Bistatic MIMO Radar System
International Symposium on Information Engineering and Electronic Commerce, 3rd (IEEC 2011)