An oxide based two phase nanocomposite electrolyte (Ce0.9Gd0.1O2) was synthesized by a co-precipitation method and coated with Yttrium oxide (Y2O3). The nanocomposite electrolyte showed the significant performance of power density 750mW/cm2 and higher conductivities at relatively low temperature 550°C. Ionic conductivities were measured with electrochemical impedance spectroscopy (EIS) and DC (4 probe method). The structural and morphological properties of the prepared electrolyte were investigated by means of High Resolution Scanning Electron Microscopy (HRSEM). The thermal stability was determined with Differential Scanning Calorimetry (DSC). The particle size was calculated with Scherrer formula and compare with SEM results, 15–20 nm is in a good agreement with the SEM and X-ray diffraction (XRD) results. The purpose of the study to introduce the functional nanocomposite materials, for advanced fuel cell technology (NANOCOFC) to meet the challenges of solid oxide fuel cell (SOFC).

This content is only available via PDF.
You do not currently have access to this content.